1. Describe each graph as a transformation of y = |x| or $y = x^2$. Then write its equation.

Example:

Answer: Reflect the graph y = |x| across the x-axis. Then, translate 4 units to the left and 1 unit down.

Equation: y = -|x + 4| - 1

a. 2 2 4 x

c.

А

2. Describe each graph below as a transformation of y = |x + 3|, shown at the right.

a

1_

6 4 2 -6 -4 -2 -2

C. 6 2 2 4 6

d.

- 3. Write an equation for each transformation of the given parent function.
- a. Transform the parent function y = |x| by translating it to the left 5 and up 7 units.
- b. Transform the parent function $y = x^2$ by translating it to the right 6 and then reflecting it across the x-axis.
- c. Transform the parent function $y = x^2$ moving it down 3 units and to the left 10 units.
- d. Transform the parent function y = |x| by moving it down 2 units and reflecting it across the x-axis.
- e. Transform the parent function y = |x| by reflecting it across the x-axis, moving it to right 7 units and down 1 unit.
- 4. Describe how each equation transforms the parent graph $y = x^2$ or y = |x|.
- a. $y = (x + 3)^2$

b. y = |x - 1.5|

c. $y = -x^2 - 5$

- d. $y = (x-2)^2 + 13$
- e. y = -|x + 9| 8
- f. y + 2.5 = |x 4|.

- 5. Use f(x) = 2|x + 4| + 1 to find the following:
- a. f(5)

b. f(-6)

c. f(-2) + 3

d. f(x + 2)

- 6. A chemical reaction consumes 12% of the reactant per minute. A scientist begins with 500 grams of one reactant. So, the equation $y = 500 (0.88)^x$ gives the amount of reactant, y, remaining after x minutes.
 - a. What does the number 0.88 tell you?
- b. What does the number 500 tell you?
- c. How much reactant is remaining after 5 minutes?
- 7. This table shows the temperature of water in a pan set on a stove.

Time (min)	0	2	4	6	8	10	12	14	16	18
Temperature (°C)	22	29	36	44	51	58	65	72	80	87

- a. Find the equation of a line that models this data.
- b. How long will it take for the water to boil (100°C)?