

Applications

- 1. Figures a, b, and c are polygons. Figure d is not a polygon because it cannot be traced without visiting several points more than once. Figures e and f are not polygons because they have edges that are not line segments.
- 6. Although the sides in the drawing of angle 2 are longer, the drawing of angle 1 indicates a greater turn and thus a larger angle. Mistaking length of sides in a drawing as a measure of angle size is a common misconception.

2. Common Polygons

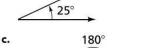
Number of Sides and Angles	Polygon Name	Examples in the Shapes Set	
3	triangle	A, I, P, T	
4	quadrilateral	B, G, H, J, K, L, M, N, O, Q, R, S, U, V	
5	pentagon	С	
6	hexagon	D	
7	heptagon	E	
8	octagon	F	
9	nonagon	none	
10	decagon	none	
12	dodecagon	none	

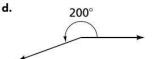
- 3. Regular polygons include: A, B, C, D, E, and F
- 4. Shapes of signs:
 - a. pentagon
 - b. square
 - c. squares (two of them)
 - d. equilateral triangles
 - e. trapezoids
 - f. rectangles and octagon
 - g. isosceles triangle
 - h. rectangle and equilateral triangle
 - i. square
- **5.** Acute angles are *c* and *e*; right angles are *b* and *d*; obtuse angles are *a* and *f*.

- **7. a.** Figures B, G, H, and J have only right angle corners.
 - b. Figures C, D, E, and F have only obtuse angle corners.
 - c. Figures A and P have only acute angle corners.
 - **d.** Figures Q and S have at least one angle of each type.
- 8. a. two complete rotations
 - b. one and one-half complete rotations
 - one-half of a complete turn (essentially reversing direction)
- a. 40° is closest to 45°
 - **b.** 140° is closest to 135°
 - c. 175° is closest to 180°
 - **d.** 220° is closest to 225°
 - e. 250° is closest to 240°
 - f. 310° is closest to 315°

Shapes and Designs Investigation 1

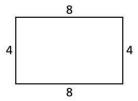
Copyright @ Pearson Education, Inc., or its affiliates. All Rights Reserved.



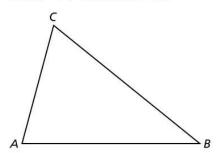

- **10. a.** 180°
 - **b.** 90°
 - **c.** 150°
 - **d.** 60°
 - **e.** 270°
 - **f.** 360°
 - g. 120°
 - **h.** 30°
 - i. right angle: b; acute angles: d and h; obtuse angles: c and g
- 11. finding degree measures by deduction
- **a.** 15°
- **b.** 67.5°
- c. 112.5°
- **d.** 150°
- e. 240°
- **f.** 540°
- **12. a.** $\angle BVA = 45^{\circ}$ and $\angle AVB = 315^{\circ}$
 - **b.** $\angle LKJ = 80^{\circ}$ and $\angle JKL = 280^{\circ}$
 - **c.** $\angle RQP = 120^{\circ}$ and $\angle PQR = 240^{\circ}$
 - **d.** $\angle ZYX = 160^{\circ}$ and $\angle XYZ = 200^{\circ}$
- **13.** $x = 150^{\circ}$
- **14.** $x = 55^{\circ}$
- **15.** $x = 63^{\circ}$
- **16.** $x = 325^{\circ}$
- **17. a.** 15 minutes = 90°
 - **b.** 30 minutes = 180°
 - **c.** 20 minutes = 120°
 - **d.** one hour = 360°
 - e. 5 minutes = 30°
 - **f.** one and one-half hours = 540°
- **18.** a. 60°
 - **b.** 45°
 - **c.** 36°
- **19.** $m \angle JVK = 60^{\circ}$
- **20.** $m \angle JVL = 110^{\circ}$

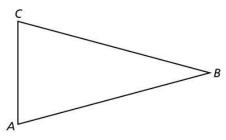
- **21.** $m \angle JVM = 150^{\circ}$
- **22.** $m \angle KVL = 50^{\circ}$
- **23.** $m \angle KVM = 90^{\circ}$
- **24.** $m \angle LVM = 40^{\circ}$
- **25.** the complement of $\angle JVK = 30^{\circ}$
- **26.** the supplement of $\angle JVK = 120^{\circ}$
- **27.** the complement of $\angle MVL = 50^{\circ}$
- **28.** the supplement of $\angle JVL = 70^{\circ}$
- **29. a.** Angle 1 at 60° is larger than angle 2 at 30°.
 - **b.** The two angles are the same size at 135°.
 - c. Angle 1 at 90° is larger than angle 2 at 45° .
- **30.** a. The three angles measure 75° , 65° , and 40° .
 - **b.** The four angles measure 120°, 120°, 60°, and 60°.
- **31.** a. 50°
 - **b.** 135°
 - **c.** 20°
 - **d.** 210°
 - e. 170°
- 32. a.

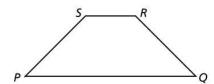
b.



Shapes and Designs Investigation 1


 ${\it Copyright @ Pearson Education, Inc., or its affiliates. All Rights Reserved.}$


33. A rectangle that has perimeter 24 and one side 8 will look like this:


34. A triangle with $\overline{AB} = 2$ in., $\overline{AC} = 1$ in., and $\angle BAC = 75^{\circ}$ will look like this:

35. There are many triangles that have $\angle BAC = 75^{\circ}$ and $\angle ACB = 75^{\circ}$. All are similar to this:

36. A trapezoid *PQRS* that has $\angle QPS = 45^{\circ}$, $\angle RQP = 45^{\circ}$, $\overline{PS} = 1$ in., and $\overline{PQ} = 2$ in. will look like this:

Connections

- **37.** Answers will vary. In some sense nearest of each type would be $\frac{3}{9}$ and $\frac{5}{15}$.
- **38.** Answers will vary. In some sense nearest of each type would be $\frac{6}{10}$ and $\frac{12}{20}$.
- **39.** Answers will vary. In some sense nearest of each type would be $\frac{12}{28}$ and $\frac{18}{42}$.
- **40.** Answers will vary. In some sense nearest of each type would be $\frac{15}{9}$ and $\frac{25}{15}$.

41.
$$\frac{5}{12} < \frac{9}{12}$$

42.
$$\frac{15}{35} < \frac{12}{20}$$

43.
$$\frac{7}{13} > \frac{20}{41}$$

44.
$$\frac{45}{36} = \frac{35}{28}$$

46. C

47. a. 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360

b.
$$360 = 2^3 3^2 5$$

49. $\frac{1}{2} = \frac{180}{260}$

50.
$$\frac{1}{10} = \frac{36}{360}$$

51.
$$\frac{1}{9} = \frac{40}{360}$$

52.
$$\frac{1}{3} = \frac{120}{360}$$

53. a.
$$\frac{1}{4}$$

b.
$$\frac{3}{4}$$

- 54. Minute hand rotations
 - a. 10 minutes
 - **b.** 5 minutes
 - **c.** $\frac{1}{12}$
 - **d.** 30°
- **55. a.** Linear rulers use units like inches, feet, yards, centimeters, or meters; angle rulers use degrees (**Note:** in mathematical and scientific reasoning, radians).

Shapes and Designs

3

Investigation 1

Copyright @ Pearson Education, Inc., or its affiliates. All Rights Reserved.

- b. In some sense the two measurement schemes are similar. Take a small unit of length or angle spread and find how many copies of that unit will fit into the segment or larger angle to be measured.
- **56.** The measure of ∠AVB is 108°. The measure of ∠BVC is 72°.
- **57.** Both students have given reasonable answers. However, when no direction of rotation is indicated, it is customary to focus on the angle as a union of two rays with common endpoint and measure between 0 and 180 degrees.

- 58. a. 10 square units
 - b. 24 square centimeters
 - c. 24 square units
- 59. Multiple triangles are possible.
- 60. Multiple triangles are possible.
- 61. Multiple triangles are possible.
- 62. Multiple parallelograms are possible.
- 63. Multiple parallelograms are possible.

Extensions

64.

Common Quadrilaterals

Sides and Angles	Name	Examples in the Shapes Set
All sides are the same length.	rhombus	B, K, V
All sides are the same length and all angles are right angles.	square	В
All angles are right angles.	rectangle	B, G, H, J
Opposite sides are parallel.	parallelogram	B, G, H, J, K, L, M, N, V
Only one pair of opposite sides are parallel.	trapezoid	O, R, S, U

- 65. a. True
 - b. False
 - c. True
 - d. True
 - e. False
 - f. True. Note: By our chosen definition, a trapezoid is a quadrilateral with one and only one pair of parallel sides.
 - g. False
- **66.** Variations of the Four in a Row game could take a variety of forms—more concentric circles, different benchmark angle patterns (e.g., multiples of 10°), or others that we haven't imagined.

- **67.** a. SSW is 202.5°, NNW is 337.5°
 - **b.** The ship is traveling in a direction 30° north of due west.
- **68. a.** The runway heading due west is 27; heading due east is 9.
 - **b.** Runway 6 implies a compass heading of 60°. Runway 12 implies a compass heading of 120°.
 - c. Labels for runways in opposite directions differ by 18, related to the 180° difference in their directions.

Shapes and Designs Investigation 1

Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

- 69. a. She was about 10° off her intended
 - **b.** Using the scale on the map, points A and D are about 100 miles apart, points B and E are about 175 miles apart, points C and F are about 275 miles apart.
 - ${f c.}$ If you fly 20° south of the intended course, you might end up in the Samoa Islands.

Shapes and Designs Investigation 1 Copyright @ Pearson Education, Inc., or its affiliates. All Rights Reserved.

5 of 5 9/3/2015 2:28 PM